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Abstract. Nuclei are prototypes of many-body open quantum systems. Complex aggregates
of protons and neutrons that interact through forces arising from quantum chromo-dynamics,
nuclei exhibit both bound and unbound states, which can be strongly coupled. In this
respect, one of the major challenges for computational nuclear physics, is to provide a unified
description of structural and reaction properties of nuclei that is based on the fundamental
underlying physics: the constituent nucleons and the realistic interactions among them. This
requires a combination of innovative theoretical approaches and high-performance computing.
In this contribution, we present one of such promising techniques, the ab initio no-core shell
model/resonating-group method, and discuss applications to light nuclei scattering and fusion
reactions that power stars and Earth-base fusion facilities.

1. Introduction
Low-energy nuclear reactions are the fuel of stars such as our Sun, but also of research
facilities directed toward developing fusion power by either magnetic (e.g. ITER [1]) or
inertial (e.g. NIF [2]) confinement. Consequently, astrophysics models as well as fusion-
experiment simulations rely on various nuclear input data such as cross sections (or, equivalently,
astrophysical S-factors), energy spectra, angular distributions, etc., for thermonuclear reactions.

Providing the research community with accurate nuclear fusion data is one of the longstanding
challenges of experimental and theoretical nuclear physics both. On one hand, due to the extreme
low energies and ionized state of matter at which they take place, nuclear fusion reactions can
be very challenging or even impossible to measure in beam-target experiments, leaving to theory
a large role in extracting (often extrapolating) the astrophysically important information. On
the other hand, a fully developed fundamental theory able to provide accurate predictions and
uncertainties for a large range of relevant reactions is still missing, the main obstacle being the
treatment of scattering states for many-nucleon systems based on the constituent nucleons and
the realistic interactions among them.

Some of the outstanding light-nucleus uncertainty sources in astrophysics applications include:
reactions leading to the nucleosynthesis of 8B (and the production of the solar neutrinos
measured in terrestrial experiments) such as the 7Be(p, γ)8B and 3He(α, γ)7Be radiative capture
rates; the thermonuclear reaction rates of α capture on 8Be and 12C nuclei during the stellar
helium burning; and fusion reactions that affect the predictions of Big Bang nucleosyntesys for
the abundances of light elements, such as the 3He(d,p)4He. At the same time, large uncertainties
in reactions such as the 3H+d →4He+n+γ bremsstrahlung process or the 3H(3H, 2n)4He fusion



are limiting factors in the understanding of how the fuel is assembled in deuterium-tritium
based fusion experiments. The increasingly sophisticate experimental effort devoted to these
and other reactions needs to be accompanied by accurate calculations with predictive capability
in the low-energy limit.

At the same time, developing a comprehensive description of nuclear properties requires
also understanding exotic nuclei, short-lived nuclei that inhabit remote regions of the nuclear
landscape, where the neutron-to-proton rations are larger or smaller than those naturally
occurring on earth. These nuclei are difficult to study, due to their fragile nature and the
often small production cross section. They present new phenomena, such as halo densities,
vanishing of magic numbers, and “abnormal” spin-parity of ground states. Once again, the new
experiments with exotic nuclei that will be carried out at the Facility for Rare Isotope Beams
need to be supported by predictive calculations.

In both instances, a fundamental theory is needed that will enhance our ability of predicting
nuclear behaviors in regions that might not be accessible to experiments. Developing such
a theory requires abandoning the “traditional” separated treatment of discrete states and
scattering continuum, and seeking a unified description of structural and reaction properties.
Indeed, nuclei are prototypical many-body open quantum systems. They exhibit bound states,
resonances, scattering states, all of which can be strongly coupled. Nuclear structure properties
in the vicinity of thresholds are affected by the continuum of scattering and decay channels. At
the same time, low-energy scattering and reactions, such as fusions rates, are affected by the
internal structure of the interacting nuclei.

In the framework of the interacting shell model, first attempts to incorporate continuum
effects in structure calculations based on the Feshbach projection formalism [3, 4] led to various
formulations of the continuum shell model [5–9]. Modern versions of this are the shell model
embedded in the continuum [8, 10], and the time-dependent approach to the continuum shell
model [11]. A more recent attempt of extending the interacting shell model to the treatment
of open quantum systems is the complex-energy or Gamow shell model, in which a symmetric
description of bound, resonant and scattering single-particle states is achieved by working within
a Berggren ensemble [12–15]. The cluster orbital shell model is an other variant of complex-
energy shell model [16].

An alternative to the shell model picture of the nucleus was proposed in 1937 by Wheeler [17],
in the form of the resonating-group method [18], a microscopic approach which explicitly takes
cluster correlations into account. Here, nuclear bound states, resonances and reactions are
treated within the same framework by means of expansions over fully antisymmetric cluster
wave functions. A modern and physically equivalent incarnation of this approach is the generator
coordinate method [19–22]. In this techniques, which make often use of central effective NN
interactions and simplified cluster wave functions that are not necessarily eigenstates of the
chosen Hamiltonian, the clustering of nuclei is introduced explicitly, so that the treatment of
reactions becomes straightforward.

Finally, a unified description of the structural and reaction properties of light-to-medium
mass nuclei is recently starting to be accomplished also within an ab initio framework, thanks
mainly to the Green’s function Monte Carlo [23], no-core shell model/resonating-group method
(NCSM/RGM) [24–26] and coupled cluster technique with a Gamow-Hartree-Fock basis [27].

In this contribution, we give an overview of the NCSM/RGM approach. In Sec. 2 we briefly
present the NCSM/RGM formalism, while a summary of its most important applications is
given in Sec. 3. Conclusions are drawn in Sec. 4.

2. Ab initio NCSM/RGM
The ab initio nuclear reaction approach that we are developing is an extension of the ab initio

no-core shell model (NCSM) [28]. The innovation which allows us to go beyond bound states



and treat reactions is the use of cluster basis states in the spirit of the resonating-group method,

|ΦJπT
νr 〉 =

[

(

|A−a α1I
π1

1 T1〉 |a α2I
π2

2 T2〉
)(sT )

Yℓ (r̂A−a,a)
](JπT ) δ(r − rA−a,a)

rrA−a,a
, (1)

in which each nucleon cluster is described within the NCSM. The above translational invariant
cluster basis states describe two nuclei (a target and a projectile composed of A − a and a
nucleons, respectively) whose centers of mass are separated by the relative coordinate ~rA−a,a

and that are traveling in a 2sℓJ wave or relative motion (with s the channel spin, ℓ the relative
momentum, and J the total angular momentum of the system). Additional quantum numbers
characterizing the basis states are parity π = π1π2(−1)ℓ and total isospin T . For the intrinsic
(antisymmetric) wave functions of the two nuclei we employ the eigenstates |A−a α1I

π1

1 T1〉
and |a α2I

π2

2 T2〉 of the (A − a)- and a-nucleon intrinsic Hamiltonians, respectively, as obtained
within the NCSM approach. These are characterized by the spin-parity, isospin and energy
labels Iπi

i , Ti, and αi, respectively, where i = 1, 2. In our notation, all these quantum numbers
are grouped into a cumulative index ν = {A−a α1I

π1

1 T1; a α2I
π2

2 T2; sℓ}. Finally, we note that
the channel states (1) are not antisymmetric with respect to exchanges of nucleons pertaining to
different clusters. Therefore, to preserve the Pauli principle one has to introduce the appropriate
inter-cluster antisymmetrizer, schematically

Âν =

√

(A−a)!a!

A!



1 +
∑

P 6=id

(−)pP



 , (2)

where the sum runs over all possible permutations of nucleons P different from the identical one
that can be carried out between two different clusters (of A − a and a nucleons, respectively),
and p is the number of interchanges characterizing them. The operator (2) is labeled by the
channel index ν to signify that its form depends on the mass partition, (A−a, a), of the channel
state to which is applied.

The channel states (1), fully antisimmetrized by the action of the antisymmetrization operator

Âν , are used as a continuous basis set to expand the many-body wave function,

|ΨJπT 〉 =
∑

ν

∫

drr2 Âν |Φ
JπT
νr 〉

[N−1/2χ]J
πT

ν (r)

r
, (3)

where χJπT
ν (r) represent continuous linear variational amplitudes that are determined by solving

the orthogonalized RGM equations:

∑

ν′

∫

dr′r′ 2[N− 1

2HN− 1

2 ]J
πT

νν′ (r, r′)
χJπT

ν′ (r′)

r′
= E

χJπT
ν (r)

r
. (4)

Here N JπT
νν′ (r, r′) and HJπT

νν′ (r, r′), commonly referred to as integration kernels, are respectively
the overlap (or norm) and Hamiltonian matrix elements over the antisymmetrized basis (1), i.e.:

N JπT
ν′ν (r′, r) =

〈

ΦJπT
ν′r′

∣

∣ Âν′Âν

∣

∣ΦJπT
νr

〉

, HJπT
ν′ν (r′, r) =

〈

ΦJπT
ν′r′

∣

∣ Âν′HÂν

∣

∣ΦJπT
νr

〉

(5)

where H is the microscopic A−nucleon Hamiltonian and E is the total energy in the center of
mass (c.m.) frame. The calculation of the above many-body matrix elements, which contain
all the nuclear structure and antisymmetrization properties of the system under consideration,
represents the main task in performing RGM calculations. In the following we will review the
various steps required for one of such calculations within the NCSM/RGM approach.



2.1. Input: nuclear Hamiltonian and cluster eigenstates

We start from the microscopic Hamiltonian for the A−nucleon system,

H =
1

A

A
∑

i<j=11

(~pi − ~pj)
2

2m
+

A
∑

i<j=1

V NN
ij +

A
∑

i<j<k=1

V NNN
ijk , (6)

where m is the nucleon mass, and V NN and V NNN the nucleon-nucleon (NN) –nuclear plus
point-Coulomb– and three-nucleon (NNN) interactions, respectively. For the purpose of the
RGM approach, it is convenient to separate Eq. (6) into the intrinsic Hamiltonians for the (A−a)-
and a-nucleon systems, respectively H(A−a) and H(a), plus the relative motion Hamiltonian
according to:

H = Trel(r) + V̄C(r) + Vrel + H(A−a) + H(a) . (7)

Here, Trel(r) is the relative kinetic energy, V̄C(r) = Z1νZ2νe
2/r (Z1ν and Z2ν being the charge

numbers of the clusters in channel ν) the average Coulomb interaction between pairs of clusters,
and Vrel is localized relative (inter-cluster) potential given by:

Vrel =

A−a
∑

i=1

A
∑

j=A−a+1

V NN
ij +

A−a
∑

i<j=1

A
∑

k=A−a+1

V NNN
ijk +

A−a
∑

i=1

A
∑

j<k=A−a+1

V NNN
ijk − V̄C(r) . (8)

Besides the nuclear components of the interactions between nucleons belonging to different
clusters, it is important to notice that the overall contribution to the relative potential (8)
coming from the Coulomb interaction,

A−a
∑

i=1

A
∑

j=A−a+1

(

e2(1 + τ z
i )(1 + τ z

j )

4|~ri − ~rj |
−

1

(A − a)a
V̄C(r)

)

, (9)

is also localized, presenting an r−2 behavior, as the distance r between the two clusters increases.
The other main input required for calculating the RGM integration kernels of Eq. (5) are

the eigenstates of the projectile and target wave functions. In the NCSM/RGM approach, these
are obtained by diagonalizing H(A−a) and H(a) in the model spaces spanned by the (A − a)-
and a-nucleon NCSM bases, respectively. We adopt complete HO bases, the size of which is
defined by the maximum number, Nmax, of HO quanta above the lowest configuration shared
by the nucleons (the definition of the model-space size coincides for eigenstates of the same
parity, differs by one unity for eigenstates of opposite parity). The same Nmax value and HO
frequency Ω are used for both clusters. Thanks to the unique properties of the HO basis, we
can make use of Jacobi-coordinate wave functions [29, 30] for both nuclei or only for the lightest
of the pair (typically the projectile, a ≤ 4), and still preserve the translational invariance of
the problem. In the second case we expand the eigenstates of the heavier cluster (typically the
target) on a Slater-determinant (SD) basis, and remove completely the spurious c.m. components
as explained in Sec. II.B.2 of Ref. [25]. Such dual approach can be used as a way of verifying
our results. The use of the SD basis is computationally advantageous and allows us to explore
reactions involving p-shell nuclei. In this case, the Hamiltonian matrix can reach dimensions up
to 109, and diagonalizations are obtained by means of the Lanczos algorithm [31, 32].

Because of the complexity of the nuclear force among protons and neutrons, most nuclear
interaction models generate strong short-range nucleon-nucleon correlations and the large but
finite model spaces computationally achievable are not sufficient to reach the full convergence
through a “bare” calculation. In these cases it is crucial to make the nuclear many-body
problem computationally more tractable by means of effective interactions obtained through



unitary transformations of the initial Hamiltonian. Such effective interactions can be derived,
for target, projectile and compound A-nucleon system, through the Lee-Suzuki procedure in a
consistent and formally exact way within the NCSM basis (see Refs. [28, 33] and Sec. II.B
of Ref. [25]). Alternatively, one can perform variational calculations using bare similarity-
renormalization-group (SRG) [34, 35] evolved potentials. This second choice is preferable in
the NCSM/RGM approach, where, to avoid possible inconsistencies, it is desirable that the
same nuclear interaction be used to obtain the structure of projectile and target, as well as the
overall projectile-target potential (i.e., in H(A−a), H(a), and Vrel). In most of the applications

presented in Sec. 3 we employ SRG-evolved chiral N3LO [36] NN potentials (SRG-N3LO).

2.2. Calculation of norm and Hamiltonian kernels

From Eqs. (2) and (7) it follows that the norm and Hamiltonian kernels can be factorized into
“full-space” and “model-space” components according to:

N JπT
ν′ν (r′, r) = δν′ν

δ(r′ − r)

r′r
+ N ex

ν′ν(r
′, r) (10)

and,

HJπT
ν′ν (r′, r) =

[

Trel(r
′) + V̄C(r′) + E

I′
1
T ′

1

α′

1

+ E
I′
2
T ′

2

α′

2

]

N JπT
ν′ν (r′, r) + VJπT

ν′ν (r′, r) , (11)

where the exchange part of the norm, N ex
ν′ν(r

′, r), and the potential kernel, VJπT
ν′ν (r′, r), are

obtained in the truncated model space by expanding the Dirac delta function of Eq. (1) on a
set of HO radial wave functions with identical frequency Ω and model-space size Nmax as those
used for the two clusters, more in detail:

N ex
ν′ν(r

′, r) =
∑

n′n

Rn′ℓ′(r
′)Rnℓ(r) ×











〈

ΦJπT
ν′n′

∣

∣

∑

P 6=id(−)pP
∣

∣ΦJπT
νn

〉

if a′ = a

〈

ΦJπT
ν′n′

∣

∣

√

A!
(A−a′)!a′!Âν

∣

∣ΦJπT
νn

〉

if a′ 6= a
(12)

and

VJπT
ν′ν (r′, r) =

∑

n′n

Rn′ℓ′(r
′)Rnℓ(r)

〈

ΦJπT
ν′r′

∣

∣

√

A!
(A−a′)!a′!VrelÂν

∣

∣ΦJπT
νr

〉

. (13)

Such a procedure is justified for matrix elements of localized operators such as those entering
the exchange part of the norm and the potential kernels. To obtain the above expressions, we
introduce the HO Jacobi channel states

|ΦJπT
νn 〉 =

[

(

|A−a α1I
π1

1 T1〉 |a α2I
π2

2 T2〉
)(sT )

Yℓ (η̂A−a)
](JπT )

Rnℓ(rA−a,a) , (14)

take advantage of the commutation between antisymmetrizers (2) and A-nucleon Hamilto-

nian (6), [Âν , H]=0, and use the following relationship dictated by symmetry considerations:

Âν′Âν |Φ
JπT
νn 〉 =

√

A!
(A−a′)!a′!Âν |Φ

JπT
νn 〉 . (15)

As pointed out in Sec. 2, the channel states (1) are not anti-symmetric with respect to the
exchange of nucleons pertaining to different clusters (fully anti-symmetric states are recovered

through the action of the operator Âν). As a consequence, the Hamiltonian kernel as defined
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Figure 1. Diagrammatic representation of: (a) “overlap” and (b) “one-nucleon-exchange”
components of the norm kernel of Eq. (18). The groups of circled lines represent the (A−2)-,
(A−1)-, and two-nucleon clusters. Bottom and upper part of the diagram represent initial and
final states, respectively.

in Eq. (11) is explicitly non Hermitian. Using Âν′HÂν = 1
2(Âν′ÂνH + HÂν′Âν), we introduce

the Hermitized Hamiltonian kernel H̄JπT
ν′ν in the form

H̄JπT
ν′ν (r′, r)=

〈

ΦJπT
ν′r′

∣

∣

1
2

(

Âν′H
√

A!
(A−a)!a! +

√

A!
(A−a′)!a′!HÂν

)

∣

∣ΦJπT
νr

〉

. (16)

As a final note, we would like to point out that the exchange part of the norm kernel is explicitly
hermitian, in particular:

〈

ΦJπT
ν′n′

∣

∣

√

A!
(A−a′)!a′!Âν

∣

∣ΦJπT
νn

〉

=
〈

ΦJπT
ν′n′

∣

∣ Âν′

√

A!
(A−a)!a!

∣

∣ΦJπT
νn

〉

. (17)

The explicit form of the inter-cluster antisymmetrizers for a = 1 and a = 2 projectiles,
together with the algebraic expressions of the integration kernels for the specific cases a′ = a = 1
and a′ = a = 2 of equal mass partitions in initial and final states can be found in Refs. [25]
and [26], respectively. For reactions involving a deuterium-nucleus entrance and nucleon-nucleus
exit channels [e.g., 3H(d, n)4He] or vice versa, and, more in general, whenever both nucleon-
nucleus and deuterium-nucleus channel basis states are used in the RGM model space, one has
to address the additional contributions coming from the off-diagonal matrix elements between
the two mass partitions: (A− 1, 1) and (A− 2, 2). Here, we list these additional terms (two for
the norm and five for the Hamiltonian kernel), without entering in the details of their algebraic
expressions, which will be published elsewhere.

The exchange part of the norm kernel for an (A− 2, 2) mass partition in the initial state (ν)
and an (A − 1, 1) mass partition in the final state (ν ′) can be cast in form:

N ex
ν′ν(r

′, r) =
√

A−1
2

∑

n′ n

Rn′ℓ′(r
′)Rnℓ(r)

[

2
〈

ΦJπT
ν′n′

∣

∣ ΦJπT
νn

〉

− (A − 2)
〈

ΦJπT
ν′n′

∣

∣ P̂A−2,A

∣

∣ΦJπT
νn

〉

]

.

(18)

Two terms contribute to the above equation: the overlap between the initial (A− 2, 2) and final
(A-1,1) binary-cluster states [corresponding to diagram (a) of Fig. 1]; and a one-nucleon exchange
term, corresponding to diagram (b) of Fig. 1. The corresponding Hermitized Hamiltonian kernel
is obtained according to Eq. (16). In particular, the NN part of the Hermitized potential kernel
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Figure 2. Diagrammatic representation of the components of the Hermitized potential kernel.
The groups of circled lines represent the (A−2)-, (A−1)-, and two-nucleon clusters. Bottom and
upper part of the diagram represent initial and final states, respectively.

is given by:

V̄NN
ν′ν (r′, r) =

√

A−1
2

∑

n′ n

Rn′ℓ′(r
′)Rnℓ(r)

[

2(A − 2)
〈

ΦJπT
ν′n′

∣

∣ VA−2,A(1 − P̂A−2,A)
∣

∣ΦJπT
νn

〉

+
〈

ΦJπT
ν′n′

∣

∣ VA−1,A

∣

∣ΦJπT
νn

〉

+ (A − 2)
〈

ΦJπT
ν′n′

∣

∣ VA−2,A−1

∣

∣ΦJπT
νn

〉

−(A − 2)(A − 3)
〈

ΦJπT
ν′n′

∣

∣

1
2 P̂A−2,AVA−3,A−2 + VA−3,A−2P̂A−2,A

∣

∣ΦJπT
νn

〉

]

. (19)

In this expression, we identify four separate terms corresponding to the six diagrams of Fig. 2.
The first term on the right-hand-side of Eq. (19) corresponds to diagrams (a) and (b), the second
and third terms correspond to diagrams (c) and (d), respectively, while diagrams (e) and (f)
represent the fourth term.

The applications presented in this contribution are obtained with the NN part only of the
inter-cluster interaction. The inclusion of the three-nucleon force into the formalism, although
more involved, is straightforward and is currently in progress. As an example, the potential
kernel for the same (A− 1, 1) partition in both initial and final states (a′ = a = 1) contains two
additional terms due to the presence of the NNN force in the Hamiltonian. These are:

VNNN
ν′ν (r′, r) =

∑

n′ n

Rn′ℓ′(r
′)Rnℓ(r)

[

(A−1)(A−2)
2

〈

ΦJπT
ν′n′

∣

∣ VA−2,A−1,A(1 − 2P̂A−1,A)
∣

∣ΦJπT
νn

〉

+ (A−1)(A−2)(A−3)
2

〈

ΦJπT
ν′n′

∣

∣ P̂A−1,AVA−3,A−2,A−1

∣

∣ΦJπT
νn

〉

]

. (20)

As for the corresponding NN portion of the potential kernel, there are a direct and an exchange
term, described by diagrams (a) and (b), and diagram (c) of Fig. 3, respectively.

The calculation of matrix elements of the type shown in Eqs. (18)-(20) represents the most
computationally intensive step of the NCSM/RGM approach. Each of them requires the
derivation and implementation in specialized algorithms of non trivial algebraic expressions. An
advantage of the NCSM/RGM approach is that one can work with Slater-determinant target
wave functions and still preserve the translational invariance of the problem (see Sec. II.B.2 of
Ref. [25]). This allows the use of powerful second quantization techniques. In such a framework,
the kernels are written in terms of matrix elements of the one-, two- , three-body densities,
etc., calculated on the target wave functions. As an example, the first two [diagrams (a) and
(b) of Fig. 3] and the last [diagram (c) of Fig. 3] terms of the NNN projectile kernel (20)
depend on two- and three-body density matrix elements of the target nucleus, respectively. In
comparison, the NN potential kernel for an identical (A − 1, 1) mass partition in both initial
and final states depends only on matrix elements of the one and two-body densities. This
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Figure 3. Diagrammatic representation of the components of the direct ((a) and (b)) and
exchange components of the NNN potential kernel for the same (A − 1, 1) partition in both
initial and final states (a′ = a = 1). The groups of circled lines represent the (A−1)-nucleon
cluster. Bottom and upper part of the diagram represent initial and final states, respectively.

highlights the increased complexity of the NCSM/RGM approach when the three-nucleon force
is included in the Hamiltonian. To conclude this section, we note that the computational demand
(in terms of both CPU time and memory requirements) for the calculation of the integration
kernels rapidly increases with projectile mass, number of projectile/target states, and number
of channels included making the NCSM/RGM a computationally intensive approach.

2.3. Output: eigenstates, eigenenergies and Scattering matrix

Due to the Pauli exclusion principle, the integration kernels are surfaces in three dimensions, and
give rise to channel-dependent non-local couplings W JπT

νν′ (r, r′) between the unknown projectile-
target relative wave functions. Indeed, by separating local diagonal and non-local terms, Eq. (4)
can be cast in the form:

[T̂rel(r) + V̄C(r) − (E − E
I

π1

1
T1

α1
− E

I
π2

2
T2

α2
)]

χJπT
ν (r)

r
+

∑

ν′

∫

dr′ r′ 2 W JπT
νν′ (r, r′)

χJπT
ν′ (r′)

r′
= 0.

(21)

The solution of such a set of integral-differential coupled channel equations represents a fairly
standard problem in scattering theory, only slightly complicated by the presence of non local
coupling potentials. A particularly efficient technique for the solution of Eq. (21) is the R-
matrix method on Lagrange mesh [37, 38]. This is a method based on the microscopic R-matrix
theory [39, 40] in which one assumes that V̄C(r) is the only interaction experienced by the clusters
beyond a sufficiently large separation r0, thus dividing the configuration space into an internal
and an external region. In the internal region, the wave function can be written as an expansion
over a set of square integrable basis functions, while in the external region it can be approximated
by its asymptotic form for large r,

χJπT
ν (r) =

i

2
v−1/2
ν [δνiH

−
ℓ (ην , κνr) − SJπT

νi H+
ℓ (ην , κνr)] , (22)

for scattering states, or
χJπT

ν (r) = CJπT
ν Wℓ(ην , κνr) , (23)

for bound states. Here, H∓
ℓ (ην , κνr) = Gℓ(ην , κνr) ∓ iFℓ(ην , κνr) are incoming and outgoing

Coulomb functions, whereas Wℓ(ην , κνr) are Whittaker functions. They depend on the channel
state relative angular momentum ℓ, wave number κν , and Sommerfeld parameter ην . The
corresponding velocity is denoted as vν . The scattering matrix SJπT

νi (i being the initial channel)
in Eq. (22) is obtained by requiring the continuity of the wave function χJπT

ν (r) and of its first



Table 1. Mean values of the relative kinetic and potential energies and of the internal 10Be
energy in the 11Be 1/2+ ground state. NCSM/RGM calculation as described in the text.

NCSM/RGM 〈Trel〉 (MeV) 〈W 〉 (MeV) E[10Be(g.s., ex.)] (MeV) Etot (MeV)

Model Space 16.65 −15.02 −56.66 −55.03
Full 6.56 −7.39 −57.02 −57.85

derivative at the matching radius r0. The matrix elements of the scattering matrix can then be
used to calculate cross sections and other reaction observables. For bound-state calculations κν

depends on the studied binding energy. Therefore, the determination of the bound-state energy
and asymptotic normalization constant CJπT

ν in Eq. (23) is achieved iteratively starting from
an initial guess for the value of the logarithmic derivative of the wave function at the matching
radius r0.

In the R-matrix method on Lagrange mesh, the square-integrable functions chosen to expand
the wave function in the internal region are Lagrange functions [38]. This choice greatly simplifies
the calculation, particularly in the presence of non local potentials. The accuracy of the R-matrix
method on a Lagrange mesh is such that for a matching radius of r0 = 15 fm, N = 25 mesh
points are usually enough to determine a phase shift within the sixth significant digit. The
typical matching radius and number of mesh points adopted for the calculations presented in
the following section are r0 = 18 fm and N = 40.

Finally, the solution of Eq. (21) is the least expensive of the various computing steps required
for a NCSM/RGM calculation, although it can become computationally more involved as the
number of coupled channels grows.

3. Applications
3.1. Parity-inversion of the 11Be ground state

Developing a comprehensive description of nuclear properties requires understanding exotic
nuclei, loosely bound system where the neutron-to-proton rations are larger or smaller than
those naturally occurring on earth. Among light drip-line nuclei, 11Be provides a convenient
test of several important properties of neutron rich nuclei. The parity-inverted ground state of
11Be is one of the best examples of disappearance of the N = 8 magic number with increasing

neutron-to-proton ratio. Contrary to the shell model prediction of 1
2

−
[41], the observed ground-

state spin-parity of 11Be is 1
2

+
. In 2005 Forssén et al. published large-scale ab initio NCSM

calculations with several accurate NN potentials of the 11Be low-lying spectrum [42]. Despite
the large model space adopted, they were not able to explain the g.s. parity inversion. This result
was partly attributed to the size of the HO basis, which was not large enough to reproduce the
correct asymptotic of the n-10Be component of the 11-body wave function. At the same time
the calculations performed with the INOY (inside non-local outside Yukawa) NN potential of
Doleschall et al. [43] suggested that the use of a realistic NNN force in a large NCSM basis
might correct this discrepancy with experiment.

The correct asymptotic behavior of the n-10Be wave function within 11Be can be reproduced
when working within the ab initio NCSM/RGM approach. In particular, we performed Nmax = 6
coupled-channel calculations [24, 25] based on n-10Be channel states with four target eigenstates:
ground, 2+

1 , 2+
2 , and 1+

1 excited states. To facilitate a direct comparison with the earlier NCSM
results, we used the same CD-Bonn NN interaction and HO frequency h̄Ω = 13 MeV, as in



Ref. [42]. Within this model space, we found that the NCSM and NCSM/RGM energies of the
1
2

−
states are in rough agreement (-57.51 and -57.59 MeV, respectively), whereas they differ by

a dramatic ∼ 3.5 MeV in the case of the 1
2

+
state, where the Nmax = 6 energy is -54.39 MeV

in the NCSM and -57.85 MeV in the NCSM/RGM. As a result, the 1
2

−
and 1

2

+
NCSM/RGM

states are both bound (by 0.42 and 0.68 MeV, respectively) and the 1
2

+
state is the g.s. of 11Be.

To understand the reason of such a striking difference between the NCSM and NCSM/RGM

results for the 1
2

+
energy, we evaluated mean values of the relative kinetic and potential energies

as well as the mean value of the 10Be energy, and compared them to those obtained by restricting
all the integration kernels to the HO model space [i.e. by replacing the delta function of Eq. (10)
with its representation in the HO model space]. In this latter case, as in the NCSM, one loses
the correct asymptotic behavior of the n-10Be wave function. Indeed, it can be seen form Table 1
that the model-space-restricted calculation is similar (although not identical) to the standard
NCSM calculation. In addition, due to the re-scaling of the relative wave function in the internal
region when the Whittaker tail is recovered, in the full NCSM/RGM calculation we find that
both average kinetic and potential energies are smaller in absolute value than those obtained
within the HO model space, and this difference is larger for the relative kinetic energy. This is

the origin of the dramatic decrease in energy of the 1
2

+
state, which makes it bound and even

leads to a g.s. parity inversion. Although the present calculations are not sufficient to exclude
a role of NNN force in the inversion mechanism, it is clear that an accurate understanding of
loosely-bound systems can be achieved only within a dynamic approach that encompasses the
continuum.

3.2. 4He(N, N)4He scattering

The simplest system to be described in terms of binary-cluster basis states of the type described
in Eq. (1) is the scattering of nucleons on 4He targets. Here, energy arguments suggest that
already channel states formed by a nucleon in relative motion with respect to an 4He nucleus in
its g.s. should provide a very good description of this process up to fairly high energies. Indeed,
the 4He nucleus is tightly bound and its first excited state is more than 20 MeV above its ground
state. At the same time, well-determined scattering amplitudes from R-matrix fits make n- and
p-4He scattering calculations ideal benchmarks for our ab initio reaction approach.

We performed nucleon-4He calculations with the SRG-N3LO NN potential with Λ = 2.02
fm−1 in a Nmax = 17 NCSM/RGM model space spanned by N -4He(g.s.) and N -4He∗(0+

2 )
channel states. At Nmax = 17 (16, for the positive parity states) convergence of the HO expansion
for the localized parts of the NCSM/RGM integration kernels and for the 4He ground- and the
first-excited 0+0 states has been fully reached with this soft NN interaction.

As expected, the agreement (shown in Fig. 4) of our calculated n-4He and p-4He phase
shifts with those obtained from an accurate R-matrix analysis of the data is quite reasonable,
particularly for c.m. energies above ∼ 8 MeV. Correspondingly, in that energy range we can
reproduce fairly well also cross-section and polarization data. As an example, Fig. 5 compares
NCSM/RGM n− and p−4He results to the experimental data sets of Dodder et al. [46] and
Schwandt et al. [45] at En = 17 and Ep = 12 MeV nucleon laboratory energies, respectively.
The discrepancies observed in the 2P3/2 channel, where the calculated resonance is positioned at
higher energy and the phase shifts are underestimated with respect to experiment, are largely
due to a reduction in spin-orbit strength caused by the omission in our calculation of the NNN
interaction (chiral and SRG-induced). Efforts to include the NNN force into the NCSM/RGM
formalism are currently under way. More details on these calculations can be found in Ref. [47].
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3.3. Accurate evaluation of the 3H(n, n)3H cross section

The elastic n−3H cross section induced by 14.1 MeV neutrons is important for understanding
how the fuel is assembled in an inertial confinement implosion based on deuterium-tritium fuel
such as those occurring at NIF [2]. To reliably infer a fuel areal density from the yield ratio
between scattered and primary 14.1 MeV neutrons, this process needs to be known within about
5% accuracy. However, as shown in Fig. 6, the available data from beam-target experiments
draw a rather uncertain picture for the 3H(n, n)3H differential cross section at this energy. In
contrast, the elastic differential cross section for the mirror reaction, p-3He, was measured with
high accuracy at Ep=13.6 MeV [48].

In an attempt to provide an improved evaluation for the 14.1 Mev n-3H elastic cross section,
we performed NCSM/RGM calculations for both this and the mirror (p-3H) process, using n-
3H(g.s.) and p-3He(g.s.) channel states, respectively, in an HO model space with Nmax = 17
and h̄Ω = 20 MeV. As for the N−4He case described in the previous section, we adopted the
SRG-N3LO NN potential with Λ = 2.02 fm−1. The results of these calculations correspond
to the black solid curve of Figs. 6 and 7. The agreement with the experimental 3He(p, p)3He
differential cross section of Hutson et al. [48] is very good at backward angles. At forward angles,
the data are underestimated by up to 15%. Such inaccuracy in the NCSM/RGM calculations is
largely due to the omission of channel states with the three-nucleon system in a breakup state,
which are obviously important at the laboratory energies considered here. While the inclusion of
such channels was out of reach of the present calculation, we used the p-3He data to quantify and
correct for this inaccuracy by deducing a smooth scaling factor and applying it to the calculated
n-3H differential cross section. The result of this procedure, estimated to be accurate to ∼ 5%,
are shown by red dashed curves (scaled NCSM/RGM) in Figs. 6 and 7. The n-3H differential
cross section at En=14 MeV inferred in this way, compares well with that obtained by means of
an R-matrix analysis (also relying on the p-3He data) [49] and with a new set of measurements
obtained in a deuterium-tritium inertial confinement implosion at the OMEGA laser [50]. The
integrated elastic cross section at 14 MeV obtained from the scaled NCSM/RGM calculation
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is 0.94 barn. Finally, we note that there is currently no ab initio theory capable of precisely
describing the n-3H reaction above the 3H breakup threshold, where, in addition to n-3H, one
should include also three- (n-n-d) and four-body (n-n-n-p) final states. Efforts to extend the
NCSM/RGM approach to include three-cluster channel states are currently under way.

3.4. The 7Be(p, γ)8B radiative capture

The 7Be(p, γ)8B radiative capture is the final step in the nucleosynthetic chain leading to 8B and
one of the main inputs of the standard model of solar neutrinos. Recently, we have performed
the first ab initio many-body calculation [51], of this reaction starting from the SRG-N3LO NN
interaction with Λ = 1.86 fm−1. Using p-7Be channel states including the five lowest Nmax = 10

eigenstates of 7Be (the 3
2

−
ground and the 1

2

−
,72

−
, and first and second 5

2

−
excited states), we

solved Eq. (4) first with bound-state boundary conditions to find the bound state of 8B, and
then with scattering boundary conditions to find the p-7Be scattering wave functions. Former
and latter wave functions were later used to calculate the capture cross section, which, at solar
energies, is dominated by non-resonant E1 transitions from p-7Be S- and D-waves into the
weakly-bound ground state of 8B. All stages of the calculation were based on the same HO
frequency of h̄Ω = 18 MeV, which minimizes the g.s. energy of 7Be. The largest model space
achievable for the present calculation within the full NCSM basis is Nmax = 10. At this basis size,
the 7Be g.s. energy is very close to convergence as indicated by a fairly flat frequency dependence
in the range 16 ≤ h̄Ω ≤ 20 MeV, and the vicinity to the Nmax = 12 result obtained within the
importance-truncated NCSM [52, 53]. The choice of Λ = 1.86 fm−1 in the SRG evolution of the
N3LO NN interaction leads to a single 2+ bound state for 8B with a separation energy of 136
keV quite close to the observed one (137 keV). This is very important for the description of the
low-energy behavior of the 7Be(p, γ)8B astrophysical S-factor, known as S17. We note that the
NNN interaction induced by the SRG evolution of the NN potential is repulsive in the Λ-range
∼ 1.8-2.1 fm−1, and, in very light nuclei, its contributions are canceled to a good extent by those
of the initial attractive chiral NNN force (which is also SRG evolved) [54, 55].

The resulting S17 astrophysical factor is compared to several experimental data sets in
Figure 8. Energy dependence and absolute magnitude follow closely the trend of the indirect
Coulomb breakup measurements of Shümann et al. [56, 57], while somewhat underestimating the
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direct data of Junghans et al. [58]. The resonance, particularly evident in these and Filippone’s
data, is due to the M1 capture, which does not contribute to a theoretical calculation outside of
the narrow 8B 1+ resonance and is negligible at astrophysical energies [59, 60]. The M1 operator,
for which any dependence upon two-body currents needs to be included explicitly, poses more
uncertainties than the Siegert’s E1 operator. At the same time, the treatment of this operator
within the NCSM/RGM approach is slightly complicated by the additional contributions coming
from the core (7Be) part of the wave function. Nevertheless, we plan to calculate its contribution
in the future.

The convergence of our results with respect to the size of the HO model space was assessed
by means of calculations up to Nmax = 12 within the importance-truncation NCSM scheme [52,
53]with (due to computational limitations) only the first three eigenstates of 7Be. The Nmax = 10
and 12 S-factors are very close. As for the convergence in the number of 7Be states, we explored
it by means of calculations including up to 8 7Be eigenstates in a Nmax = 8 basis (larger Nmax

values are currently out of reach with more then five 7Be states). This last set of calculations

is presented in Fig. 9, from which it appears that, apart from the two 5
2

−
states, the only other

state to have a significant impact on the S17 is the second 7
2

−
, the inclusion of which affects the

separation energy and contributes somewhat to the flattening of the S-factor around 1.5 MeV.
We note that for these last set of calculations we used SRG-N3LO interactions obtained with
different Λ values with the intent to math closely the experimental separation energy in each of
the largest model spaces. Based on this analysis, we conclude that the use of an Nmax = 10 HO
model space is justified and the limitation to five 7Be eigenstates is quite reasonable. Finally, our
calculated S17(0) = 19.4(7) MeV b is on the lower side, but consistent with the latest evaluation
20.8 ± 0.7(expt)±1.4(theory) [60].

3.5. The 3H(d, n)4He and 3He(d, p)4He fusion reactions

The 3H(d, n)4He and 3He(d, p)4He fusion reactions have important implications first and
foremost for fusion energy generation, but also for nuclear astrophysics, and atomic physics.
Indeed, the deuterium-tritium fusion is the easiest reaction to achieve on earth and is pursued
by research facilities directed at reaching fusion power by either inertial (e.g., NIF) or magnetic
(e.g., ITER) confinement. Both 3H(d, n)4He and 3He(d, p)4He affect the predictions of Big Bang
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nuclosynthesis for light-nucleus abundances. In addition, the deuterium-3He fusion is also an
object of interest for atomic physics, due to the substantial electron-screening effects presented
by this reaction.

In the following we present the first ab initio many-body calculations [61] of these reactions
starting from the SRG-N3LO NN interaction with Λ = 1.5 fm−1, for which we reproduce
the experimental Q-value of both reactions within 1%. We adopted HO model spaces up to
Nmax = 13 with a frequency of h̄Ω = 14 MeV. The channel basis includes n-4He (p-4He), d-3H
(d-3He), d∗-3H (d∗-3He) and d′∗-3H (d′∗-3He) binary cluster states, where d∗ and d′∗ denote 3S1-
3D1 and 3D2 deuterium excited pseudostates, respectively, and the 3H (3He) and 4He nuclei are
in their ground state.

Figure 10 presents the results obtained for the 3He(d, p)4He S-factor. The deuteron
deformation and its virtual breakup, approximated by means of d pseudosates, play a crucial
role. The S-factor increases dramatically with the number of pseudostates until convergence is
reached for 9d∗ +5d′∗. The dependence upon the HO basis size is illustrated by the 3H(d, n)4He
results of Fig. 11. The convergence is satisfactory and we expect that an Nmax = 15 calculation,
which is currently out of reach, would not yield significantly different results. The experimental
position of the 3He(d, p)4He S-factor is reproduced within few tens of keV. Correspondingly,
we find an overall fair agreement with experiment for this reaction, if we exclude the region at
very low energy, where the accelerator data are enhanced by laboratory electron screening. The
3H(d, n)4He S-factor is not described as well with Λ = 1.5 fm−1. Due to the very low activation
energy of this reaction, the S-factor (particularly peak position and height) is extremely sensitive
to higher-order effects in the nuclear interaction, such as three-nucleon force (not yet included
in the calculation) and missing isospin-breaking effects in the integration kernels (which are
obtained in the isospin formalism). To compensate for these missing higher-order effects in the
interaction and reproduce the position of the 3H(d, n)4He S-factor, we performed additional
calculations using lower Λ values. This led to the theoretical S-factor of Fig. 11 (obtained for
Λ = 1.45 fm−1), that is in overall better agreement with data, although it presents a slightly
narrower and somewhat overestimated peak. This calculation would suggest that some electron-
screening enhancement could also be present in the 3H(d, n)4He measured S factor below 10
keV c.m. energy. However, these results cannot be considered conclusive until more accurate
calculations using a complete nuclear interaction (that includes the three-nucleon force) are



Figure 12. Preliminary results for the
3He-4He scattering phase shifts. The
NCSM/RGM calculations, including the
g.s. and first four 1/2+ pseudostates of
3He, were obtained using the SRG-N3LO
NN potential with Λ = 1.86 fm−1. The
HO frequency h̄Ω = 18 MeV and Nmax =
11 basis space were employed.
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performed. Work in this direction is under way.

4. Conclusions and Outlook
We gave an overview of the NCSM/RGM, an ab initio many-body approach capable of providing
a unified description of structural and reaction properties of light nuclei, by combining the RGM
with the use of realistic interactions, and a microscopic and consistent description of the nucleon
clusters, achieved via the ab initio NCSM.

Since the publication of the first results [24, 25, 47], obtained for nucleon-nucleus collisions,
the NSCM/RGM has grown into a powerful approach for the description of light-ion fusion
reactions. The formalism has been extended to include two-nucleon (deuteron) projectiles [26],
as well as complex reactions with both nucleon-nucleus and deuteron-nucleus channels [61],
based on realistic NN interactions. The treatment of three-nucleon (triton and 3He) projectiles
has also been included in the formalism, and will soon allow the first ab initio calculation of
the 3He(α, γ)7Be radiative capture. Figure 12 shows preliminary results of our ongoing effort
toward this goal. Further extensions of the approach to include the three-nucleon components
of the nuclear interaction and three-cluster channel states are under way. Preliminary results
for the exchange part of the n-n-4He norm kernel are shown in Fig. 13.

In this contribution, we have revisited the general formalism on which the NCSM/RGM is
based, and given the expressions for the terms entering the integrations kernels in the case
of a deuteron-nucleus initial and nucleon-nucleus final states, as well as the additional terms
appearing in the single-nucleon projectile potential kernel, when the three-nucleon force is
included in the Hamiltonian.

Among the applications, we reviewed: the parity inversion of the 11Be nucleus and nucleon
scattering on 4He, benchmark calculations that demonstrate the suitability of the NCSM/RGM
approach for the description of loosely bound nuclei and low-energy scattering; the evaluation
of the 3H(n, n)3H differential cross section for 14 MeV laboratory neutrons, an example of how



the ab initio NCSM/RGM can provide the research community with accurate evaluations and
uncertainties for less known reactions important for fusion-energy research; and the first many-
body ab initio calculations for the astrophysically important 7Be(p, γ)8B radiative capture and
the landmark 3H(d, n)4He and 3He(d, p)4He fusion reactions. These results are very promising
and pave the way for achieving improved evaluations of reactions relevant to astrophysics
and fusion research, such as the 3He(α, γ)7Be radiative capture or the 3H+d →4He+n + γ
bremsstrahlung process.

To conclude, we note that ab initio NCSM/RGM calculations such as those described in
this contributions, and, more importantly, those planned for the future can rapidly grow (with
projectile mass, number of projectile/target excited states, and number of channels included)
into peta- and even exa-scale computing problems. As an example, the preliminary results of
our ongoing investigation of 3He-4He scattering presented in Fig. 12 required runs with up to
64,000 cores on the Oak Ridge National Laboratory (ORNL) Jaguar [62] supercomputer.
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[6] Barz H, Rotter I and Höhn J 1977 Nuclear Physics A 275 111
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